Analisis Sebaran Titik Rawan Bencana dengan K-Means Clustering dalam Penanganan Bencana

Teguh Iman Hermanto(1*), Yusuf Muhyidin(2),

(1) Sekolah Tinggi Teknologi Wastukancana
(2) Sekolah Tinggi Teknologi Wastukancana
(*) Corresponding Author


Puwakata Regency has fertile land, agricultural products and abundant natural resources. However, the area is also vulnerable to disaster risk. Based on the data collected, the disasters that occurred in Puwakata Regency included several categories, namely landslides, droughts, hurricanes and floods. The trend of increasing numbers of disasters requires further investigation to prevent an increase in the number of victims. Given the large amount of data available, this information can be obtained through data mining analysis methods. For natural disaster data, the clustering method in data mining is very useful for grouping disaster data based on the same characteristics, so that it can be used as a basis for classifying future disaster events. The k-means algorithm is a model used to form clusters by measuring how close it is to the data set. Therefore, in terms of the location of the disaster, the type of disaster and its impact on the disaster, it is hoped that this research can use the clustering technique with the k-means algorithm to classify disaster-prone points. The results obtained 3 clusters, namely, the type of drought disaster is cluster 0, the type of landslide is cluster 1, and the type of landslide is cluster 2. After forming three clusters, disaster management strategies are drawn up at each disaster-prone point in the Purwakarta area

Full Text:



M. Tanzil Furqon and L. Muflikhah, “Clustering the Potential Risk of Tsunami Using Density-Based Spatial Clustering of Application With Noise (Dbscan),” J. Enviromental Eng. Sustain. Technol., vol. 3, no. 1, pp. 1–8, 2016, doi: 10.21776/ub.jeest.2016.003.01.1.

R. R, E. G. Sihombing, L. S. Dewi, and E. Arisawati, “Analisis Algoritma Datamining pada Kasus Daerah Pelaku Kejahatan Pencurian Berdasarkan Provinsi,” J-SAKTI (Jurnal Sains Komput. dan Inform., vol. 4, no. 1, p. 77, 2020, doi: 10.30645/j-sakti.v4i1.189.

A. Supriyatna, I. Carolina, S. Janti, and A. Haidir, “Cluster ing Koridor Transjakarta Berdasarkan Jumlah Penumpang Dengan Algoritma K-Means,” J-SAKTI (Jurnal Sains Komput. dan Inform., vol. 4, no. September, pp. 682–693, 2020.

S. Susliansyah, H. Sumarno, H. Priyono, and N. Hikmah, “Pengelompokkan Data Pembelian Tinta Dengan Menggunakan Metode K-Means,” J-SAKTI (Jurnal Sains Komput. dan Inform., vol. 3, no. 2, p. 381, 2019, doi: 10.30645/j-sakti.v3i2.156.

P. S. Bhattacharjee, A. K. Md Fujail, and S. A. Begum, “A Comparison of Intrusion Detection by K-Means and Fuzzy C-Means Clustering Algorithm over the NSL-KDD Dataset,” 2017 IEEE Int. Conf. Comput. Intell. Comput. Res. ICCIC 2017, pp. 1–6, 2018, doi: 10.1109/ICCIC.2017.8524401.

P. Prihandoko and B. Bertalya, “a Data Analysis of the Impact of Natural Disaster Using K-Means Clustering Algorithm,” Kursor, vol. 8, no. 4, p. 169, 2017, doi: 10.28961/kursor.v8i4.109.

M. S. Basarslan and I. D. Argun, “Classification of a bank data set on various data mining platforms | Bir Banka Müşteri Verilerinin Farkli Veri Madenciliǧi Platformlarinda Siniflandirilmasi,” 2018 Electr. Electron. Comput. Sci. Biomed. Eng. Meet. EBBT 2018, pp. 1–4, 2018, doi: 10.1109/EBBT.2018.8391441.

M. S. Geetha Devasena, R. Kingsy Grace, and G. Gopu, “PDD: Predictive diabetes diagnosis using datamining algorithms,” 2020 Int. Conf. Comput. Commun. Informatics, ICCCI 2020, pp. 22–25, 2020, doi: 10.1109/ICCCI48352.2020.9104108.

Prihandoko, Bertalya, and M. I. Ramadhan, “An analysis of natural disaster data by using K-means and K-medoids algorithm of data mining techniques,” QiR 2017 - 2017 15th Int. Conf. Qual. Res. Int. Symp. Electr. Comput. Eng., vol. 2017-Decem, pp. 221–225, 2017, doi: 10.1109/QIR.2017.8168485.

N. Puspitasari, J. A. Widians, and N. B. Setiawan, “Customer segmentation using bisecting k-means algorithm based on recency, frequency, and monetary (RFM) model,” J. Teknol. dan Sist. Komput., vol. 8, no. 2, pp. 78–83, 2020, doi: 10.14710/jtsiskom.8.2.2020.78-83.

B. E. V. Comendador, L. W. Rabago, and B. T. Tanguilig, “An educational model based on Knowledge Discovery in Databases (KDD) to predict learner’s behavior using classification techniques,” ICSPCC 2016 - IEEE Int. Conf. Signal Process. Commun. Comput. Conf. Proc., pp. 1–6, 2016, doi: 10.1109/ICSPCC.2016.7753623.

A. S. Devi, I. K. G. D. Putra, and I. M. Sukarsa, “Implementasi Metode Clustering DBSCAN pada Proses Pengambilan Keputusan,” Lontar Komput. J. Ilm. Teknol. Inf., vol. 6, no. 3, p. 185, 2015, doi: 10.24843/lkjiti.2015.v06.i03.p05.

S. Sugriyono and M. U. Siregar, “Preprocessing kNN algorithm classification using K-means and distance matrix with students’ academic performance dataset,” J. Teknol. dan Sist. Komput., vol. 8, no. 4, pp. 311–316, 2020, doi: 10.14710/jtsiskom.2020.13874.

A. Masrur, G. Thakur, K. Sparks, R. Palumbo, and D. J. Peuquet, “Co-location Pattern Mining of Geosocial Data to Characterize Urban Functional Spaces,” Proc. - 2019 IEEE Int. Conf. Big Data, Big Data 2019, pp. 4099–4102, 2019, doi: 10.1109/BigData47090.2019.9006263.

M. Murdiaty, A. Angela, and C. Sylvia, “Pengelompokkan Data Bencana Alam Berdasarkan Wilayah, Waktu, Jumlah Korban dan Kerusakan Fasilitas Dengan Algoritma K-Means,” J. Media Inform. Budidarma, vol. 4, no. 3, p. 744, 2020, doi: 10.30865/mib.v4i3.2213.



  • There are currently no refbacks.

J-SAKTI (Jurnal Sains Komputer & Informatika)
Published Papers Indexed/Abstracted By:

Jumlah Kunjungan :

View My Stats